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Abstract—The derivation and application of a method designed
to investigate the focusing properties of pulsed baseband signals of
short pulsewidth ( 1 ns) in biological tissue media are reported.
To this end, sources fed from TEM waveguides, concentrically
placed at the periphery of a three-layer cylindrical lossy model,
are assumed. A Fourier-series-based methodology, appropriate
for a useful class of pulse train incident signals, is presented and
utilized to study the dynamics of pulse propagation inside the
tissue medium. The propagation of each spectral component of the
incident field within the tissue medium is analyzed by applying an
integral-equation technique and a Fourier-series representation is
used in order to obtain the time dependence of the electromagnetic
fields produced at any point within tissue due to the pulsed
excitation of the array elements. Numerical results are computed
and presented at several points in a three-layer geometry, 20 cm
in diameter, irradiated by an eight-element waveguide array.
Focusing at a specific point of interest within tissue is achieved
by properly adjusting the time delay of the signals injected to the
individual applicators of the array.

Index Terms—Biological tissues, focusing, pulsed signals.

I. INTRODUCTION

T HE principle idea of using positive interference arising
from various near- or far-field sources to create focusing

of electromagnetic waves has extensively been employed during
the past 50 years based on the use of continuous wave signals.
In this context, phased-array principles and optimization tech-
niques have been applied to develop hyperthermia systems for
the treatment of malignant tumors [1]–[3]. The main limitations
of continuous wave concepts used to achieve focusing have been
related to the excessive loss suffered by each wave radiated from
each individual source and to the side effects created by the
coupling phenomena between array source elements. Especially
strong coupling phenomena are observed in case of near-field
applications where a concentric array of elements is used [4].

The possibility of employing pulsed signals to improve fo-
cusing properties has been suggested by various researchers,
using as an additional system parameter the time delay between
array signals. Although limited information is currently avail-
able on the behavior of propagation of pulsed signals with base-
band spectral content, the behavior arising from precursor phe-
nomena is expected to be useful in focusing electromagnetic
waves.

The propagation of a single pulse inside dispersive dielectric
media has received widespread treatment by the use of asymp-
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totic analysis [5], [6], transform techniques [7], time-domain
integral equation solvers [8] and the finite-difference time-do-
main algorithm [9]–[11]. In [12]and [13], a Fourier-series-based
methodology is presented and utilized to study the dynamics of
short trapezoidally modulated microwave signals inside homo-
geneous dispersive biological media from the point-of-view of
possible hazardous health effects. The Fourier-series approach
yields a good approximation for a single pulse when the period
of the pulse train is large compared with an individual pulse
duration, avoiding the difficulties often encountered in the nu-
merical inversion of the Fourier integral representation due to
the highly oscillating nature of the transform kernel [14]. Fur-
thermore, the analysis of the error properties of recent finite-dif-
ference-based algorithms for pulse propagation in a dispersive
medium suggests that the computational mesh density required
to represent precursor signals may become excessive for simu-
lations of realistic problems in two and three dimensions [15].
Almost all these works have been restricted to the propagation
of a pulsed electromagnetic plane wave in homogeneous disper-
sive dielectric media and the main interest has been focused on
the study of the associated precursor fields.

Recently, focusing properties of waves emitted from
rectangular waveguides inside a layered lossy cylinder have
been investigated by using pulse modulated microwave signals
[16]. In this paper, an integral-equation technique in conjunc-
tion with a Galerkin’s procedure are adopted to predict the
medium response to time harmonic excitation of the
array. The temporal dependence of the field produced at any
point within tissue due to single compact incident pulses
originating from the array elements is then obtained in the form
of an inverse Fourier integral. By employing a high-frequency
(9.5 GHz) carrier, the use of a large number of applicators,
compared to low-frequency systems, is enabled and focusing
at a point of interest within a biological tissue model is
achieved by applying time coincidence and constructive phase
interference principles. In order to investigate the focusing
properties of pulsed baseband signals, sources fed from TEM
waveguides could be used. In this direction, the selection of a
structure shown in Fig. 1 is a natural selection based on the use
of TEM waveguides meeting the above requirements. This is a
problem of considerable practical importance due to the recent
advances in electromagnetic source technology, which permit
the generation of high-peak-power electromagnetic pulse train
signals with rapid rise times and short pulse durations [17].

In this paper, the transmission of pulsed baseband signals
radiated from a concentric waveguide array in a three-layer
cylindrical lossy model is analyzed theoretically. The possi-
bility of using pulsed signals with low-frequency components
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Fig. 1. Three-layer cylindrical model irradiated by a concentric array of TEM
waveguide applicators.

and associated increased penetration depth has motivated the
initiation of the present study. The proposed method is based on
the treatment of individual pulses as members of a pulse train
so that the problem is amenable to a Fourier-series analysis.
The presented method is applicable to a class of incident signals
having periodic time variation

(1)

where is the period of the pulse train. This class of signals has
a Fourier-series representation for which each member of the
discrete spectrum defines the complex amplitude of a time–har-
monic incident wave. The propagation of the incident field to an
observation point within the tissue medium is modeled by using
an integral-equation technique in order to solve the associated
boundary value problem for each spectral component and then
a Fourier-series representation is produced for the transmitted
wave field. It is important to emphasize that a detailed analysis
is employed, which takes into account the modification of the
field on each waveguide aperture resulted from the other radi-
ating elements of the array as well as from the presence of the
lossy layered dielectric body standing at the near-field region.

The paper is organized as follows. The formulation and anal-
ysis for the prediction of the exact field evolution over the en-
tire space—time domain of interest is presented in Section II. In
Section III, the necessary checks for the validation of the numer-
ical results are presented, followed by a set of numerical results
for a specific tissue-array geometry in Section IV.

II. M ATHEMATICAL FORMULATION AND ANALYSIS

The system examined in this paper consists of an arbitrary
number ( ) of identical parallel-plate waveguide applicators.
The geometry of the radiating system looking into a three-layer
cylindrical lossy model of circular cross section is shown in
Fig. 1. The three layers can be used to simulate different bio-
logical media with dispersive characteristics, such as skin, bone,
and brain tissues. Alternatively, the two internal layers may be

used to simulate biological media (e.g., brain and bone tissues)
with the external layer simulating a lossless dielectric medium,
which is commonly used to prevent excessive heating of the
tissue surface. The dielectric properties of the layers are denoted
with the corresponding frequency-dependent relative complex
permittivities , , . The magnetic properties of
regions 1–3 are assumed to be independent of frequency and
are defined as , which is appropriate
for the simulation of baseband pulse propagation in biological
media. The free-space wavenumber is , where
and are the free-space permittivity and permeability, respec-
tively. The applicators are filled with a dielectric material of rel-
ative permittivity and relative permeability and have an
aperture size of circulating around the cylindrical body’s sur-
face while their infinite dimension is parallel to the cylindrical
body’s axis. It is assumed that the apertures are not completely
planar and are conforming to the cylindrical body’s surface. Ra-
diating apertures are separated by perfectly conducting flanges.
By considering a global cylindrical polar coordinate system,

, the position vector of theth applicator’s aperture center is
expressed , . An input pulse
signal is considered to be driven to the
applicators, which is repeated with a periodso that the inci-
dent signal can be written as a pulse train as

(2)

where is an infinite sequence of inpulse functions, spaced
at the pulse repetition interval

(3)

and is the convolution operator. The incident pulse train given
in (2) has the standard Fourier-series representation

(4)

with the pulse train fundamental angular fre-
quency. The complex amplitude of theth Fourier component
is given by

(5)

The strategy of the present approach is to use this Fourier-se-
ries representation of the incident pulse train, to analyze the
propagation of each Fourier component individually into the
structure of interest, by applying the analysis presented in Sec-
tion II-A, and then to sum the individual transmitted compo-
nents to reconstruct the propagated response to the pulse train.
The pulses in the incident pulse train are assumed to be spaced
widely enough apart so that there is no mutual interference of
the pulses within the target structure.

A. Time–Harmonic Signals

The analysis begins by considering a single time–harmonic
component at a fixed angular frequency . The time
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dependence of the field quantities is assumed to be
and it is suppressed throughout the analysis. In order to solve
this boundary value problem, an integral-equation technique is
adopted. The solution of the wave equation

(6)

in cylindrical polar coordinates, inside the tissue layers ( ,
, ) is expressed in terms of cylindrical vector wave functions

[18]. Thus,

(7)

where and , , , are to
be determined. The cylindrical vector wave functions

, , are given by [18]

(8)

and

(9)

In (8) and (9), , are the cylindrical polar coordinates and
, are Bessel’s and

Neumann’s functions.
Next, the fields inside the waveguide applicators are de-

scribed by using the waveguides normal modes. If the operating
frequency is lower than the cutoff frequency, only a
single mode, the TEM mode, with a zero cutoff frequency will
be propagating in the waveguides. Thus, the fields inside each
waveguide applicator are expressed as the superposition of the
incident TEM mode and an infinite number of all the reflected
TEM and TM modes since TE modes are not excited due to
the geometry of the structure. Thus, the transverse electric
field in the th applicator ( ) can be written,
with respect to the local Cartesian coordinates, of the th
waveguide, as follows:

(10)

where
the subscript is used to denote the transverse field
components;
complex amplitude of the excited TEM mode in
the th waveguide;
complex amplitudes of the reflected TEM,th
order TM modes, respectively, in theth wave-
guide;
corresponding propagation constants, given by
the following equations:

(11)

(12)

The transverse and modal fields are [18]

(13)

(14)

By satisfying the continuity of the tangential electric- and
magnetic-field components on the and inter-
faces and on the contact surface between cylindrical
lossy model and radiating apertures, the following system of
coupled integral equations is obtained in terms of an unknown
transverse electric field on the waveguide apertures

(15)

where is the incident TEM mode transverse magnetic field
on the aperture of theth waveguide, and the kernel matrices

indicate the effect of
coupling from the th aperture to the th aperture

and are given in the Appendix. In order to determine
the electric field on the waveguide apertures, the system of inte-
gral equations (15) is solved. To this end, a Galerkin’s technique
is adopted by expanding the unknown transverse electric field
on each aperture into waveguide normal modes. There-
fore, with respect to theth ( ) aperture’s local
Cartesian coordinate system, the electric field on the same aper-
ture is expressed in the following form:

(16)
By substituting (16) into the system of coupled integral equa-

tions (15), and making use of the waveguide modes orthogo-
nality [18], the system of integral equations (15) is converted
into an infinite system of linear equations. Assuming theand

expansion coefficients are determined approximately, the
aperture fields can be determined approximately by using (16)
and then the coefficients , , , ( , , ) are
determined easily. Substituting the values of these coefficients
into (7), the electric field at any point inside tissue can be easily
computed.

B. Gaussian Pulsed Signals

In this study, a Gaussian pulse train is considered to be driven
to the applicators. One period of the time variation of the inci-
dent signal of theth applicator is written as

(17)

which is centered around the time , with a constant re-
lated to the pulsewidth in time. The associated pulse train has a
Fourier series representation, according to (4), for which each
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member of the discrete spectrum defines the complex am-
plitude of a time–harmonic wave incident to the applicator and
is given by

(18)

The incident wave distribution on the waveguide apertures is
obtained as a spectrum of TEM components

(19)

where is the amplitude of the incident TEM mode driven
to the th applicator and is the TEM field dis-
tribution on the aperture. The quantity of primary interest
in this analysis is the complex transfer function ,

and specifically the discrete spectrum compo-
nents , representing the field produced
at point inside tissue, when only theth applicator is excited
and the field on its aperture is a continuous time–harmonic
field ( ) of unit amplitude [ in (10)]. In
computing this field, by using the analysis presented in Section
II-A, the power coupling to the remaining applicators of the
configuration is taken into account.

It is important to observe that the transfer function ,
depends on the relative position of the point of

interest with respect to theth applicator. Therefore,
the transfer function at a point of interest for each applicator
can be computed by exciting only one applicator and then com-
puting the field at different points within tissue, corresponding
to the different relative positions of the point of interest with re-
spect to each individual applicator. This is

(20)

The field transmitted from the applicators of the array at the
point of interest, at the frequency , is obtained by the
following summation over the elements of the array:

(21)

The time-domain representation for the total electric field at an
observation point within the biological tissue medium is ob-
tained by summing the contributions made by each transmitted
frequency component

(22)
where ( ) denotes the real part of the complex exponential
form of the time-domain representation of each transmitted fre-
quency component and is the mode number of the highest
frequency component retained for the Fourier series.

III. V ALIDATION OF THE NUMERICAL RESULTS

The method developed here has been applied to investigate
the focusing ability of a concentric array consisting of eight

TABLE I
CONVERGENCE FOR THETEM SELF

REFLECTION AND MUTUAL COUPLING COEFFICIENTSS = A =A , ` = 1, 2,
5 [SEE(10)] AT f = 1 GHz BY INCREASING THEAPERTUREMODE NUMBER

TEM waveguides, at a point of interest inside a two-layer cylin-
drical biological tissue model, 16 cm in diameter, surrounded
by a lossless dielectric layer. The two layers of the biological
tissue model are used to simulate bone and brain tissues. The
thicknesses of the bone and the external dielectric layers are
taken to be cm and cm, respec-
tively ( cm). The dielectric constant of the external
layer used in the calculations is . In order to obtain
the complex relative permittivities of the tissue media, avail-
able literature data points [19] for dielectric constant and con-
ductivity of bone and brain tissues have been used and inter-
polated values have been computed at any frequency. However,
more elaborate relaxation models can also be used to obtain the
frequency-dependent permittivity of biological media [20]. The
applicators aperture size is defined by cm. The aper-
ture centers are placed symmetrically at the periphery of the
external dielectric layer and the corresponding position vectors
are , , with ,

.
The input signal driven to each applicator is considered to

be a Gaussian pulse train, with an individual pulse duration of
ns, and with a pulse repetition interval of ns.

In order to check the developed numerical code, several trials
have been performed. In the first place, the computation of the
transfer function, by using the analysis presented in Section
II-A, has been checked. Regarding the numerical evaluation of
the kernel matrix elements given in the Appendix,
the infinite summation with respect to the orderof Bessel’s
functions in the expression of fields inside the tissue layers [(7)]
is computed, by truncating as high as .

The convergence and stability of the solution in the fre-
quency domain have been examined by increasing the number
of modes included in the aperture electric fields [(16)].
In Table I, convergence patterns are presented, in terms of the
coefficients of (10), when only applicator 1 is excited by
a time–harmonic field of unit amplitude ( in (10)) at

GHz. These coefficients correspond to the self-reflection
coefficient ( ) and the mutual coupling coefficients
between neighboring ( ) and opposite ( )
applicators of the examined configuration. From Table I, it can
be easily observed, that the subset of modes (TEM, , ,

, ) appearing on applicator apertures is sufficient to
assure convergence of the solution. Furthermore, the continuity
of the tangential fields at the and interface
planes between different layers has been checked and verified
numerically, while the validity of the boundary conditions
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(a)

(b)

Fig. 2. A two-layer tissue model, 16 cm in diameter, simulating bone and
brain tissues, surrounded by a 2-cm-thick lossless dielectric layer, is irradiated
by a symmetric concentric array of eight waveguides withb = 7:5 cm. Field
distributions: (a) on aperture (1) and (b) on aperture (2), when only applicator
(1) is excited by a time–harmonic field of unit amplitude at 1 GHz. Comparison
of the results of (7) and (16).

on the interface has also been checked. In Fig. 2,
the electric-field distributions on the waveguide apertures 1
and 2 are presented, when only applicator 1 is excited by a
time–harmonic field of unit amplitude [ in (10)] at

GHz. The aperture electric field intensities, computed
directly from the series of (7) are compared with the results of
(16) for the field inside region 3 when . As it is known,
the Galerkin technique employed in Section II-A satisfies the
boundary conditions on the surface approximately. This
is exhibited in Fig. 2. Notice that at the waveguide apertures

edges, the well-known Gibbs phenomenon [21] associated with
the Fourier series is observed.

It is important to emphasize the fact that the developed anal-
ysis takes into account the effects on each aperture field from the
other radiating elements and from the layered dielectric cylinder
standing at the near-field region. The exact knowledge of the
electric field at the apertures permits the evaluation of the elec-
tric field inside tissue with high precision.

IV. NUMERICAL RESULTS AND DISCUSSION

Numerical computations have been performed for the
geometry described in Section III. First, by using the analysis
presented in Section II-A, the discreteth-order compo-
nent of the complex transfer function ,

at any point inside
the cylindrical model can be computed. In Fig. 3(a)–(f), the
magnitude of the main ( ) component of the transfer function
is shown at different points on the axis of radiating aperture
1, inside the dielectric layer and the tissue media, over the
frequency bandwidth of the used signals ( , being
the cutoff frequency of the mode). On the surface of the
dielectric layer, the amplitude of the transfer function increases
with increasing frequency, reaching its maximum value at the
high edge of the frequency spectrum, where the transmitted
power from the waveguide into the dielectric becomes larger
and, thus, the waveguide radiation more effective.

As the pulse proceeds deeper into the lossy model, the ampli-
tudes of the individual frequency components decay in different
rates with distance and the contribution of low-frequency com-
ponents becomes more pronounced with increasing depth. The
difference between the transfer function at the high (1900 MHz)
and low (100 MHz) frequency edge is of the order of 15 dB at
the bone–brain interface, while at 3-cm depth from the tissue
surface, a 10-dB difference is observed.

Selective resonance phenomena are observed near 400, 700,
1100, and 1400 MHz, while the maximum value of the transfer
function is reached at the high edge of the frequency spectrum.
At the bone–brain interface, the resonance at 1400 MHz is
4.5 dB stronger than the corresponding resonance at 400 MHz,
but as the propagation distance increases, the relative impor-
tance is changed, and at 3-cm depth from the tissue surface a
2.5-dB difference is observed.

The time-domain waveforms at the same points along the
axis of applicator 1 can then be computed by using (22) and
are presented in Fig. 4(a)–(f), when only applicator 1 is excited
( , , and ). The waveform in
Fig. 4(a) was computed at a position immediately following the
contact surface between aperture 1 and the external dielectric
layer at the aperture center, while in Fig. 4(b)–(f), the temporal
evolution of the pulsed fields propagating inside the tissue layers
along the axis of applicator 1 is shown. A 70% decrease in the
peak amplitude of the pulse is observed after the 2-cm propaga-
tion distance inside the external dielectric layer, while a 25% de-
crease is observed for the 0.5-cm propagation inside bone layer,
a 5% decrease for the first 0.5-cm propagation inside brain tissue
and a 30% decrease for the next 2-cm propagation inside brain.
Secondary peaks appearing in the obtained waveforms, which
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(a) (b)

(c) (d)

(e) (f)
Fig. 3. Magnitude of the main component (jF j) of the transfer function at several positions on the axis of radiating aperture 1 for the same tissue-array geometry
considered in Fig. 2. The input signals driven to the individual applicators are assumed to be Gaussian pulse trains with initial 1-ns pulsewidth and apulse repetition
rate of 10 ns. The transfer function is computed for uniform array excitation. (a) On the surface of the dielectric layer. (b) On the interface between dielectric and
bone layers. (c) On the interface between bone and brain layers. (d) At 1-cm propagation distance inside tissue. (e) At 2-cm propagation distance inside tissue. (f)
At 3-cm propagation distance inside tissue.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Temporal evolution of the main component (E ) of the field along the axis of aperture 1, when only this applicator is excited with unit amplitude. (a)
On the surface of the external dielectric layer. (b) On the surface of the bone layer. (c) At the interface between bone and brain tissues. (d) At 1-cm propagation
distance inside tissue. (e) At 2-cm propagation distance inside tissue. (f) At 3-cm propagation distance inside tissue.

are comparable in strength with the main peak of the pulse,
can be explained by considering the power coupling through the
apertures of the array and the scattering phenomena occurring
in the examined geometry.

In an attempt to focus the electromagnetic radiation at a point
of interest (cm) within the brain tissue, located at 2-cm
depth from the tissue surface on the axis of applicator 1, time

coincidence of the fields originated from the eight waveguides
of the array is used. To this end, the discrete spectrum compo-
nents of the transfer function of each individual applicator are
computed and the temporal evolution of the main vector com-
ponent of the field originated from each individual appli-
cator at the point of interest is examined in detail in Fig. 4(e)
and Fig. 5. Due to the-axis symmetry and to the fact that the
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(a) (b)

(c) (d)

Fig. 5. Temporal evolution of the main component (E ) of the field produced at a point of interest, located at 2-cm depth inside tissue, on the axis of applicator
1, when only one applicator of the array is excited. (a)–(d) Successive excitation of applicators 2–5 .

axes of applicators 1 and 5 coincide to the-axis, only the fields
produced from applicators 1 to 5 of the array are presented in
Fig. 4(e) and Fig. 5(a)–(d), respectively. It can be observed that
the main contribution is from the most neighboring to the point
of interest array elements (applicators 1 and 2). Furthermore, it
is important to note the significant contribution from the array
opposite element (applicator 5).

The time dependence of the field produced at the point of
interest is shown in Fig. 6(a) for uniform array excitation (

, ) and in Fig. 6(b) for the
following type of excitation:

ns

ns

ns

ns

ns

which has been selected to achieve time coincidence of the sig-
nals at the point of interest.

By comparing Fig. 6(a) with Fig. 6(b), a 100% increase of the
main peak amplitude of the pulse is achieved by adjusting the

excitation of the pulsed signals driven to the individual appli-
cators. Moreover, by integrating the squared magnitude of the
electric field for a period of ns, it can be easily ob-
served that a 340% increase of the deposited power at the point
of interest is achieved by adjusting the array temporal excita-
tion.

V. CONCLUSION

A rigorous analysis has been presented for predicting the
electromagnetic field produced in a layered cylindrical lossy
model by an array of concentrically placed TEM waveguide
applicators excited by pulsed signals with baseband spectral
content. Numerical results have been computed and presented
for a bone–brain tissue model irradiated by an eight-element
array, by considering as input signal to each individual appli-
cator, a Gaussian pulse train with short pulsewidth (ns) and
sufficiently large repetition interval (10 ns). By adjusting the
time delay of the signals injected to the individual applicators,
focusing at a target point within brain tissue has been achieved.
These results provide an enhanced physical insight of pulse
propagation inside layered lossy media and can be used in
order to achieve focusing inside biological tissues.
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(a)

(b)

Fig. 6. Temporal evolution of the main field component (E ) at the point of
interest. (a) For uniform array excitation. (b) For array excitation adjusted to
achieve focusing.

APPENDIX

KERNEL MATRIX FUNCTIONS

(A.1)

where is the Kronecker’s delta

(A.2)

and

(A.3)

The matrices involved in (A.3) are given by the following equa-
tions:

(A.4)

(A.5)

where

(A.6)
and

(A.7)

with

and (A.8)

being Bessel’s or Neuman’s functions, respectively, and

at (A.9)

The matrices involved in (A.9) are

(A.10)

and

(A.11)

The matrices , , , and , appearing
in (A.11) are obtained from (A.6) and (A.7), respectively, for

, .
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