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Abstract: Effective meodeling of nonlinear dynamic
systems can be achieved by employing Laguerre
expansions and feedforward artificial neural networks in
the form of the Laguerre-Volterra network (LVN). In
this paper an extension of the LVN methodology to
multiple-input systems is presented. Results from
simulated systems show that this method can Yyield
accurate nonlinear models of multiple-input Volterra
systems, even when considerable noise is present.
Keywords- Volterra models, nonlinear modeling,
multiple-input systems.

1. INTRODUCTION

Previous modeling studies of nonlinear Volterra systems
demonstrated the practical advantages of using Laguerre
expansions of the Volterra kernels in order to achieve model
compactness and estimation accuracy [1]. The resulting
Laguerre expansion technique can be combined with
feedforward artificial neural networks utilizing polynomial
activation functions in the form of the Laguerre-Volterra
network (LVN). The latter receives as its input vector the
outputs of a Laguerre filter-bank fed by the input signal of
the system, whereby the Laguerre parameter is estimated
from the data {2].

A different formulation of the LVN, suitable for
modeling nonlinear multiple-input systems, whereby each
input is fed to a different Laguerre filter-bank, is examined
herein. The wuse of different Laguerre filter-banks
characterized by distinct parameters allows the effective
study of the system dynamics related to each input separately
as well as the study of their nonlinear interactions, quantified
in the form of cross-terms. An illustrative example with
synthetic data is presented and demonstrates the
effectiveness of the proposed approach.

II. METHODOLOGY

The Laguerre-Volterra network (LVN) for a multiple-
input input nonlinear system is shown in Fig. 1. Each of the

inputs {x,}is fed into a different Laguerre filter-bank. The

asymptotically exponential structure of the Laguerre
functions makes them suitable for modeling physiological
systems, since the latter often exhibit asymptotically
exponential structure in their Volterra kernels, The Laguerre
parameter g defines the relaxation rate of the Laguerre
functions and determines the convergence of the Laguerre
expansion for a given kernel function. Larger a values result
in longer spread of significant values (slow dynamics). The

choice of the Laguerre parameters {a, } for the filter-banks
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Figure I The multiple-input Laguerre-Volterra Network.

is very important in order to achieve an efficient model
representation of the system under examination. We recently
introduced a computationally efficient method, whereby the
Laguerre parameters are treated as trainable parameters of
the LVN [2].

The filter outputs in Fig. 1 are given by the discrete
convolution of 5\ (m) with the corresponding input x,(n).-

The hidden units in the second layer have Qth order
polynomial activation functions in order to make the network
functionally equivalent to a Volterra model [3].

The training of all the network parameters is performed
using a gradient descent iterative scheme, defining the cost
function as the squared error between the desired output and
the network output at each time instance n.

The difficulty in training the Laguerre parameters

' {a, }is tackled by employing the recursive relations for the

computation of the Laguerre filter-bank outputs, given below
for /~0:
Vi (my = B[V (n -1y +v0

-1

(m]-v? (r=1);i =1, 7 (1)
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where f, = a!’?, with the following initial condition:

v (m)= By (e =1+ (1= B x,(m) )

The total number of free parameters in the multiple-

7
input LVN is equal to (Z L +I+Q)-K+1+1- Note that
i=l
this number is linear with respect to the order O of the
system, in conirast to other techniques (e.g., cross-
correlation), the complexity of which depends on the system
order @ exponentially. A Minimum Description Length



(MDL) criterion is employed to determine the values of the
structural parameters in ascending order of successive trials.
The Volterra model for a Qth order nonlinear time-
invariant discrete-time 'system with [ inputs is:
Q max;) s
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Ifi=..=i, k.‘,‘.-_ (myseerm,) denote the ath order self-
kemnels of the system, otherwise they denote the nth order
cross-kernels, which describe nonlinear interactions between
different inputs. The Volterra kernels can be expressed in
terms of the network parameters as follows:

ko =X
x L‘ . .
ki(m)="c 3 wiibl (m)

k=t j=0

)
()

K L, L, .
(6] A f in}
by (mesm )= 0, S S Wi w2 bW (). b (m, )

ke jeo
(6)
I11. RESULTS

The performance of the proposed approach is
demenstrated with a high-order nonlinear system with two
inputs, shown in Fig. 2. The linear filters L, and L, are
characterized by the following impulse response functions:

{, (m) = exp(~ %) sin(%) M
I, (m)= exp(—-;%) —exp(— %) (8)
and the static nonlinearity ¥ is of fourth order:

z,(n) = 2v (1) = 3v,(m) + v () - —12— vi{ny +v(n)v,(m) ©

+%v,’(n)—%vi(n)+%v{'(n)+%v;(n}

The system is simulated for two independent Gaussian
White Noise (GWN) stimuli of unit variance and a length of
512 points each. The simulation is then repeated after adding
independent noise to the output (SNR=1¢ dB). Following an
ascending search procedure with the MDL criterion, it is
found that an LVN model with 7 Laguerre functions in each
filter bank followed by three hidden units with fourth-degree
polynomial functions is sufficient to mode! the system. The
Normalized Mean Square Error (NMSE) of the prediction
(defined as the model error sum-of-squares over the true
output sum-of-squares) is equal to 0.12% in the noise-free
case and 7.52% in the noisy case (ideally it should be 10%).
The estimated two first-order Volterra kernels &, and %, are

shown in Fig. 3 for both cases along with their true
counterparts, demonstrating the excellent performance of the
LVN method (kernel NMSEs 0.25% and 0.04% for %, and k,
respectively in the noise-free case and 0.7% and 0.32% in the
noisy case). The estimated second-order self and cross-
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Figure 2: Simulated nonlinear system.
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Figure 3: True and estimated first-order Volterra kernels: (a) k, (m)

(&) k,{m). Solid: true, Dash-dot: noise-free output, Dash: noisy output
(SNR=10 dB).

cross-kernels are also almost identical to their true
counterparts in the noise-free case (NMSEs 0.31%, 0.9% and
0.54% for kyy, kz2 and ky; respectively) and are affected more
than the first-order kernels by the presence of noise (NMSEs
10.2%, 12.59% and 8.23% respectively). The Laguerre
parameters of the two inputs converge to 0.283 and 0.743 in
the noise-free case (0.289 and 0.715 in the noisy case),
reflecting the respective fast and slow dynamics associated
with the two inputs.

IV. CONCLUSION

The LVN approach can be used to model multiple-input
nonlinear systems accurately using short input-output
records, even in the presence of noise. An equivalent
Volterra model can be obtained from the trained LVN that
includes all nonlinear interactions among the various inputs.
This methodology can find important application to
multivariate physiological systems (e.g., the cerebral blood
flow regulation system, to which the proposed approach was
applied successfully),
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