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Abstract: The dynamic relationship between cerebral
blood flow, arterial blood pressure and arterial CO, is
studied wusing the Laguerre-VYolterra network
methodology for meodeling multiple-input nonlinear
systems. Spontaneous beat-to-beat cerebral blood flow
velocity and mean arterial blood pressure fluctuations,
as well as breath-to-breath end-tidal CO; fluctuations
are analyzed and the Volterra kernels of the system are
obtained. It is found that, while pressure changes explain

most of the blood flow velocity variations, the inclusion -

of end-tidal CO; fluctvations as an additional input
variable can improve the prediction accuracy of the
model output considerably. The model includes also
nonlinear interactions between pressure and end-tidal
CO; and their impact on cerebral blood flow.
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1. INTRODUCTION

Cerebral blood flow (CBF) regulation. maintains a
relatively constant cerebral blood flow (CBF) over a wide
range of mean arterial blood pressure (MARP) changes. In
addition to pressure, blood flow regulation is affected by
other exogenous variables. One such variable is arterial
pCO,, since the reactivity of cerebral vessels to CO, affects
CBF regulation (hypercapnia causes vasodilation, while
hypocapnia causes vasoconstriction). The effect of CO; on
autoregulation can be assessed by breath-to-breath
measurements of end-tidal CO, (EtCQ,).

Dynamic cerebral autoregulation is a frequency
dependent and nonlinear phenomenon [1]. MABP changes
occurring in the low frequency range, where the
nonlinearities arc also more prominent, are attenuated more
effectively than high-frequency MABP changes. However,
whereas the dynamic relationship between MABP and CBF
has been studied extensively using spontaneous fluctuations
of the two variables (following the advent of Doppler
ultrasound), the same has not been done for the CO,-CBF
relationship, except in a limited number of studies [2]-[3].

In order to address this issue, the dynamic relationship
between CBF, MABP and pCO, is examined in a nenlinear
context, by using a recently developed nonlinear system
identification method [4], extended here to multiple-input
systems.

I1. METHODOLOGY

The Laguerre-Volterra network (LVN) combines
artificial neural networks with the Laguerre expansion
technique and has been shown to be effective in modeling

nonlinear systems from short input-output data records [4].
It is extended to multiple-input systems, in order to study
the MABP, CO,-CBF relation.

According to the method, each of the two inputs is fed
into a different discrete-time Laguerre filter-bank, whose
outputs are fully connected to a layer of hidden units with
polynomial activation functions. The output of the network
is given by a non-weighted summation of the hidden unit
outputs and an effset parameter,

This representation is equivalent to the Volterra
representation of a nonlinear system of order equal to the
degree of the activation functions. The Volterra kernels of
the system can be expressed in terms of the network
parameters. Hence, after training the network from input-
output data, we can obtain the kemnel estimates from the -
resulting values of the trained parameters. The network
training is performed using a gradient descent algorithm. In
the multiple-input case, we extract self-kernels, describing
the linear and nonlinear effécts of each input on the output,
as well as cross-kernels, describing the nonlinear
interactions between different inputs.

The experimental data were obtained from 14 healthy
subjects under normal conditions (around 40 minutes of data
from each). CBF velocity (CBFV), which represents CBF
well in all practical cases, was monitored in the middle
cranial artery using transcranial Doppler ultrasonography.
MABP was monitored noninvasively with a finger cuff
device and EtCO, was measured with an end-tidal forcing
system (nasal catheter). The measurement values were
preprocessed appropriately (i.e., resampled and high-passed
at 0.005 Hz). Six-minute data segments are employed,
MABP and EtCQO, values being the input signals of the
LVN and CBFV values being the output of the network.
The LVN model order was determined with a minimum
description length criterion, by taking both in-sample and
out-of-sample prediction performance into consideration.

III. RESULTS

The average achieved (in-sample) output prediction
NMSEs using first and second-order LVN models are given
in Table I, for one-input (MABP) and two-input (MABP
and EtCO,) LVN models. Tt is found that incorporating
EtCO, as an additional input to the system improves the
Normalized Mean Square Error (NMSE) of the LVN model
prediction considerably, compared to the single-input
{MABP) case. Moreover, the inclusion of EtCO, improves
the out-of-sample model predictions. The reduction of the
prediction NMSE from the first-order (linear) model to the
second-order (nonlinear) model is significant {over 25%),
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demonstrating the strongly nonlincar nature of CBF
regulation.

TABLE I: LVN model predictions
Model inputs MABP MABP& EtCO;

63,7 £27.2
27.3£104 |

45.1+13.1
19.446.7 |

First-order
| Total |

The relative contributions of the linear and nonlinear
terms of the model are illustrated in Fig. 1 for a typical data
segment in the frequency domain, where the output
spectrum and the spectra of the first-order and second-order
residuals (output prediction errors) are shown. The shaded
area corresponds to the difference between the first and
second-order model residuals in the frequency domain,
indicating that the nonlinearities are found below 0.1 Hz and
are prominent below 0.04 Hz. This observation is consistent
throughout all the data segments.

Averaged first-order kernels for MABP and EtCQ, for
one subject are shown in Figs. 2 and 3 respectively. The
frequency responses of the MABP kernels show that low-
frequency MABP changes are aftenuated more effectively
and that at high frequencies CBF follows MABP changes
[1]. The EtCO,; kemnels show that the effect of COQ, is
slower, as expected, and the high variance of the initial
kernel values is viewed as a pure delay of around 5 sec,
which agrees with previous findings [3], possibly due to
CO; transport phenomena.

The second-order self and cross-kernels reveal that
nonlinearities are significant and inherent to the system and
that they ‘act mainly in low frequencies (below 0.1 Hz).
Their frequency responses can provide a wealth of
information about the different mechanisms {neural,
myogenic, endothelial) influencing CBF regulation and
acting in different frequencies, as well as about their
interactions.

A critical observation concerns the issue of
nonstationarity of CBF regulation, which is addressed by
performing the analysis for overlapping six-minute

segments with a five-minute overlap. It is found that
nonstationarities are present and do not exhibit a clear
pattern. The nonlinear dynamics exhibit considerably more
nonstationary behavior than their linear counterparts.

IV. CONCLUSION

The contribution of MABP and EtCO, spontaneous
fluctuations on CBF changes can be studied with the LVN
methodology in a nonlinear context. The largest fraction of
CBF variations is explained by MABP changes but
including EtCO, can lead to more accurate models of CBF
regulation, which could be clinically valuable for the
evaluation of patients with cerebrovascular disorders (i.e.,
impaired CBF regulation).
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Figure 1: Spectra of the output (CBFV), first and second-order model
residuals. The shaded arca shows the effect of the nonlinear term.
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Figure 2: Averaged first-order MABP kemels in time and frequency
domains. Solid: average, Dotted: Std. Deviation,
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Figure 3: Averaged first-order EtCO; kernels in time and frequency
domains. Sofid; average, Dotted: Std. Deviation.
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