Input file format for Espresso (PLA-file)

espresso(5)

DESCRIPTION

 Espresso accepts as input a two-level description of a

 Boolean function. This is described as a character matrix

 with keywords embedded in the input to specify the size of

 the matrix and the logical format of the input function.

 Programs exist to translate a set of equations into this

 format (e.g., eqntott(1OCTTOOLS), bdsyn(1OCTTOOLS), eqnto

 pla(1OCTTOOLS)). This manual page refers to Version 2.3

 of Espresso.

 Comments are allowed within the input by placing a pound

 sign (#) as the first character on a line. Comments and

 unrecognized keywords are passed directly from the input

 file to standard output. Any white-space (blanks, tabs,

 etc.), except when used as a delimiter in an embedded com

 mand, is ignored. It is generally assumed that the PLA is

 specified such that each row of the PLA fits on a single

 line in the input file.

KEYWORDS

 The following keywords are recognized by espresso. The

 list shows the probable order of the keywords in a PLA

 description. [d] denotes a decimal number and [s] denotes

 a text string. The minimum required set of keywords is .i

 and .o for binary-valued functions, or .mv for multiple-

 valued functions.

 .i [d] Specifies the number of input variables.

 .o [d] Specifies the number of output functions.

 .mv [num_var] [num_binary_var] [d1] . . . [dn]

 Specifies the number of variables (num_var),

 the number of binary variables

 (num_binary_var), and the size of each of the

 multiple-valued variables (d1 through dn).

 .ilb [s1] [s2] . . . [sn]

 Gives the names of the binary valued vari

 ables. This must come after .i and .o (or

 after .mv). There must be as many tokens fol

 lowing the keyword as there are input vari

 ables.

 .ob [s1] [s2] . . . [sn]

 Gives the names of the output functions. This

 must come after .i and .o (or after .mv).

 There must be as many tokens following the

 keyword as there are output variables.

 .label var=[d] [s1] [s2] ...

 Specifies the names of the parts of a multi

 ple-valued variable. This must come after

 .mv. There must be as many tokens following

 the keyword as there are parts for this vari

 able. Note that the variables are numbered

 starting from 0.

 .type [s] Sets the logical interpretation of the charac

 ter matrix as described below under "Logical

 Description of a PLA". This keyword must come

 before any product terms. [s] is one of f, r,

 fd, fr, dr, or fdr.

 .phase [s] [s] is a string of as many 0's or 1's as there

 are output functions. It specifies which

 polarity of each output function should be

 used for the minimization (a 1 specifies that

 the ON-set of the corresponding output func

 tion should be used, and a 0 specifies that

 the OFF-set of the corresponding output func

 tion should be minimized).

 .pair [d] Specifies the number of pairs of variables

 which will be paired together using two-bit

 decoders. The rest of the line contains pairs

 of numbers which specify the binary variables

 of the PLA which will be paired together. The

 binary variables are numbered starting with 0.

 The PLA will be reshaped so that any unpaired

 binary variables occupy the leftmost part of

 the array, then the paired multiple-valued

 columns, and finally any multiple-valued vari

 ables. If the labels have been specified

 using .ilb, then the variable names may be

 used instead of the column number.

 .symbolic [s0] [s1] . . . [sn] ; [t0] [t1] . . . [tm] ;

 Specifies that the binary-valued variables

 named [s0] thru [sn] are to be considered as a

 single multiple-valued variable. Variable

 [s0] is considered the most significant bit,

 [s1] the next most significant, and [sn] is

 the least significant bit. This creates a

 variable with 2**n parts corresponding to the

 decodes of the binary-valued variables. The

 keywords [t0] thru [tm] provide the labels for

 each decode of [s0] thru [sn]. ([t0] corre

 sponds to a value of 00...00, [t1] is the

 value 00...01, etc.). The binary-variables

 may be identified by column number, or by

 variable name when .ilb is used. The binary-

 variables are removed from the function after

 the multiple-valued variable is created.

 .symbolic-output [s0] [s1] . . . [sn] ; [t0] [t1] . . .

 [tm] ;

 Specifies that the output functions [s0] ...

 [sn] are to be considered as a single symbolic

 output. This creates 2**n more output vari

 ables corresponding to the possible values of

 the outputs. The outputs may be identified by

 number (starting from 0), or by variable name

 when .ob is used. The outputs are removed

 from the function after the new set of outputs

 is created.

 .kiss Sets up for a kiss-style minimization.

 .p [d] Specifies the number of product terms. The

 product terms (one per line) follow immedi

 ately after this keyword. Actually, this line

 is ignored, and the ".e", ".end", or the end

 of the file indicate the end of the input

 description.

 .e (.end) Optionally marks the end of the PLA descrip

 tion.

LOGICAL DESCRIPTION OF A PLA

 When we speak of the ON-set of a Boolean function, we mean

 those minterms which imply the function value is a 1.

 Likewise, the OFF-set are those terms which imply the

 function is a 0, and the DC-set (don't care set) are those

 terms for which the function is unspecified. A function

 is completely described by providing its ON-set, OFF-set

 and DC-set. Note that all minterms lie in the union of

 the ON-set, OFF-set and DC-set, and that the ON-set, OFF-

 set and DC-set share no minterms.

 The purpose of the espresso minimization program is to

 find a logically equivalent set of product-terms to repre

 sent the ON-set and optionally minterms which lie in the

 DC-set, without containing any minterms of the OFF-set.

 A Boolean function can be described in one of the follow

 ing ways:

 1) By providing the ON-set. In this case, espresso

 computes the OFF-set as the complement of the ON-

 set and the DC-set is empty. This is indicated

 with the keyword .type f in the input file.

 2) By providing the ON-set and DC-set. In this case,

 espresso computes the OFF-set as the complement of

 the union of the ON-set and the DC-set. If any

 minterm belongs to both the ON-set and DC-set, then

 it is considered a don't care and may be removed

 from the ON-set during the minimization process.

 This is indicated with the keyword .type fd in the

 input file.

 3) By providing the ON-set and OFF-set. In this case,

 espresso computes the DC-set as the complement of

 the union of the ON-set and the OFF-set. It is an

 error for any minterm to belong to both the ON-set

 and OFF-set. This error may not be detected during

 the minimization, but it can be checked with the

 subprogram "-Dcheck" which will check the consis

 tency of a function. This is indicated with the

 keyword .type fr in the input file.

 4) By providing the ON-set, OFF-set and DC-set. This

 is indicated with the keyword .type fdr in the

 input file.

 If at all possible, espresso should be given the DC-set

 (either implicitly or explicitly) in order to improve the

 results of the minimization.

 A term is represented by a "cube" which can be considered

 either a compact representation of an algebraic product

 term which implies the function value is a 1, or as a rep

 resentation of a row in a PLA which implements the term.

 A cube has an input part which corresponds to the input

 plane of a PLA, and an output part which corresponds to

 the output plane of a PLA (for the multiple-valued case,

 see below).

SYMBOLS IN THE PLA MATRIX AND THEIR INTERPRETATION

 Each position in the input plane corresponds to an input

 variable where a 0 implies the corresponding input literal

 appears complemented in the product term, a 1 implies the

 input literal appears uncomplemented in the product term,

 and - implies the input literal does not appear in the

 product term.

 With type f, for each output, a 1 means this product term

 belongs to the ON-set, and a 0 or - means this product

 term has no meaning for the value of this function. This

 type corresponds to an actual PLA where only the ON-set is

 actually implemented.

 With type fd (the default), for each output, a 1 means

 this product term belongs to the ON-set, a 0 means this

 product term has no meaning for the value of this func

 tion, and a - implies this product term belongs to the DC-

 set.

 With type fr, for each output, a 1 means this product term

 belongs to the ON-set, a 0 means this product term belongs

 to the OFF-set, and a - means this product term has no

 meaning for the value of this function.

 With type fdr, for each output, a 1 means this product

 term belongs to the ON-set, a 0 means this product term

 belongs to the OFF-set, a - means this product term

 belongs to the DC-set, and a ~ implies this product term

 has no meaning for the value of this function.

 Note that regardless of the type of PLA, a ~ implies the

 product term has no meaning for the value of this func

 tion. 2 is allowed as a synonym for -, 4 is allowed for

 1, and 3 is allowed for ~.

MULTIPLE-VALUED FUNCTIONS

 Espresso will also minimize multiple-valued Boolean func

 tions. There can be an arbitrary number of multiple-val

 ued variables, and each can be of a different size. If

 there are also binary-valued variables, they should be

 given as the first variables on the line (for ease of

 description). Of course, it is always possible to place

 them anywhere on the line as a two-valued multiple-valued

 variable. The function size is described by the embedded

 option .mv rather than .i and .o.

 A multiple-output binary function with ni inputs and no

 outputs would be specified as .mv ni+1 ni no. .mv cannot

 be used with either .i or .o - use one or the other to

 specify the function size.

 The binary variables are given as described above. Each

 of the multiple-valued variables are given as a bit-vector

 of 0 and 1 which have their usual meaning for multiple-

 valued functions. The last multiple-valued variable (also

 called the output) is interpreted as described above for

 the output (to split the function into an ON-set, OFF-set

 and DC-set). A vertical bar | may be used to separate the

 multiple-valued fields in the input file.

 If the size of the multiple-valued field is less than

 zero, than a symbolic field is interpreted from the input

 file. The absolute value of the size specifies the maxi

 mum number of unique symbolic labels which are expected in

 this column. The symbolic labels are white-space delim

 ited strings of characters.

 To perform a kiss-style encoding problem, the keyword

 .kiss should be included in the file. The third to last

 variable on the input file must be the symbolic "present

 state", and the second to last variable must be the "next

 state". As always, the last variable is the output. The

 symbolic "next state" will be hacked to be actually part

 of the output.

EXAMPLE #1

 A two-bit adder which takes in two 2-bit operands and pro

 duces a 3-bit result can be described completely in

 minterms as:

 # 2-bit by 2-bit binary adder (with no carry input)

 .i 4

 .o 3

 0000 000

 0001 001

 0010 010

 0011 011

 0100 001

 0101 010

 0110 011

 0111 100

 1000 010

 1001 011

 1010 100

 1011 101

 1100 011

 1101 100

 1110 101

 1111 110

 It is also possible to specify some extra options, such

 as:

 # 2-bit by 2-bit binary adder (with no carry input)

 .i 4

 .o 3

 .ilb a1 a0 b1 b0

 .ob s2 s1 s0

 .pair 2 (a1 b1) (a0 b0)

 .phase 011

 0000 000

 0001 001

 0010 010

 .

 .

 .

 1111 110

 .e

 The option .pair indicates that the first binary-valued

 variable should be paired with the third binary-valued

 variable, and that the second variable should be paired

 with the fourth variable. The function will then be

 mapped into an equivalent multiple-valued minimization

 problem.

 The option .phase indicates that the positive-phase should

 be used for the second and third outputs, and that the

 negative phase should be used for the first output.

EXAMPLE #2

 This example shows a description of a multiple-valued

 function with 5 binary variables and 3 multiple-valued

 variables (8 variables total) where the multiple-valued

 variables have sizes of 4 27 and 10 (note that the last

 multiple-valued variable is the "output" and also encodes

 the ON-set, DC-set and OFF-set information).

 .mv 8 5 4 27 10

 .ilb in1 in2 in3 in4 in5

 .label var=5 part1 part2 part3 part4

 .label var=6 a b c d e f g h i j k l m n

 o p q r s t u v w x y z a1

 .label var=7 out1 out2 out3 out4 out5 out6

 out7 out8 out9 out10

 0-010|1000|100000000000000000000000000|0010000000

 10-10|1000|010000000000000000000000000|1000000000

 0-111|1000|001000000000000000000000000|0001000000

 0-10-|1000|000100000000000000000000000|0001000000

 00000|1000|000010000000000000000000000|1000000000

 00010|1000|000001000000000000000000000|0010000000

 01001|1000|000000100000000000000000000|0000000010

 0101-|1000|000000010000000000000000000|0000000000

 0-0-0|1000|000000001000000000000000000|1000000000

 10000|1000|000000000100000000000000000|0000000000

 11100|1000|000000000010000000000000000|0010000000

 10-10|1000|000000000001000000000000000|0000000000

 11111|1000|000000000000100000000000000|0010000000

 .

 .

 .

 11111|0001|000000000000000000000000001|0000000000

EXAMPLE #3

 This example shows a description of a multiple-valued

 function setup for kiss-style minimization. There are 5

 binary variables, 2 symbolic variables (the present-state

 and the next-state of the FSM) and the output (8 variables

 total).

 .mv 8 5 -10 -10 6

 .ilb io1 io0 init swr mack

 .ob wait minit mrd sack mwr dli

 .type fr

 .kiss

 --1-- - init0 110000

 --1-- init0 init0 110000

 --0-- init0 init1 110000

 --00- init1 init1 110000

 --01- init1 init2 110001

 --0-- init2 init4 110100

 --01- init4 init4 110100

 --00- init4 iowait 000000

 0000- iowait iowait 000000

 1000- iowait init1 110000

 01000 iowait read0 101000

 11000 iowait write0 100010

 01001 iowait rmack 100000

 11001 iowait wmack 100000

 --01- iowait init2 110001

 --0-0 rmack rmack 100000

 --0-1 rmack read0 101000

 --0-0 wmack wmack 100000

 --0-1 wmack write0 100010

 --0-- read0 read1 101001

 --0-- read1 iowait 000000

 --0-- write0 iowait 000000

EXAMPLE 4

 This example shows the use of the .symbolic keyword to

 setup a multiple-valued minimization problem.

 .i 15

 .o 4

 .ilb SeqActive<0> CacheOp<6> CacheOp<5> CacheOp<4>

 CacheOp<3> CacheOp<2> CacheOp<1> CacheOp<0>

 userKernel<0> Protection<1> Protection<0>

 cacheState<1> cacheState<0> PageDirty<0>

 WriteCycleIn<0>

 .ob CacheBusy<0> dataMayBeValid<0> dataIsValid<0>

 WriteCycleOut<0>

 .symbolic CacheOp<6> CacheOp<5> CacheOp<4> CacheOp<3>

 CacheOp<2> CacheOp<1> CacheOp<0> ;

 FET NA PHY_FET PR32 PRE_FET PW32 RA32 RD32

 RD64 RDCACHE RFO32 RFO64 TS32 WR32 WR64 WRCACHE ;

 .symbolic Protection<1> Protection<0> ;

 PROT_KRO_UNA PROT_KRW_UNA PROT_KRW_URO PROT_KRW_URW ;

 .symbolic cacheState<1> cacheState<0> ;

 CS_Invalid CS_OwnPrivate CS_OwnShared CS_UnOwned ;

 .p 22

 0000001--010110 0001

 0000001-1-00110 0001

 00001011-01011- 0100

 000010111-0011- 0100

 0000--001--01-- 0100

 0000-10--0-1--- 0100

 0000-10-1--1--- 0100

 00000-0--0-1--- 0100

 00000-0-1--1--- 0100

 0000-10--0--1-- 0100

 0000-10-1---1-- 0100

 00000-0--0--1-- 0100

 00000-0-1---1-- 0100

 ---1----------- 1000

 --1------------ 1000

 -1------------- 1000

 1-------------- 1000

 -------0------- 1000

 ----1---------- 1000

 -----0--------- 1000

 ------0-------- 1000

 --------------1 1110

 .e
