Pattern Matching on Weighted
Sequences

MANOLIS CHRISTODOULAKIS, COSTAS S. ILIOPOULOS,
LAURENT MOUCHARD, AND KOSTAS TSICHLAS

ABSTRACT. Weighted sequences are used extensively as profiles
for protein families, in the representation of binding sites and often
for the representation of sequences produced by a shotgun sequencing
strategy. We present various fundamental pattern matching problems
on weighted sequences and their respective algorithms. In addition,
we define two matching probabilistic measures and we give algorithms
for each of these measures. The uncertainty introduced in weighed
sequences can also be used as a means to perform approximate string
matching. To the best of our knowledge, this is the first time these
problems are tackled in this setting.

1 Introduction

The complete sequence of the human genome chromosomes is now almost
obtained. Various donors of diverse ethnogeographic categories (e.g., African-
American, Chinese, Caucasian, etc.) have been enrolled and offered samples
that were used to obtain the final reconstructed genome sequence. Despite
the fact that natural polymorphism is necessarily faded by this consensus,
the final sequence corresponds, more or less, to the individual sequences
from the donors.

Hopefully, the sequences of the genes, that contain coding information
which produces proteins, are usually much more conserved than non-coding
regions, and genes are what most of the research teams are looking for. The
facts that several (up to six) codons can encode the same amino acid and
that different amino acids can have identical chemical properties explain
that close (or even distant) DNA sequences can produce protein sequences
that fold identically and are able to perform exactly the same task.

In order to represent the various nucleotides that can be found at a
given location, the original DNA alphabet {A, C, G, T} has been naturally
extended to a more complex one, the IUB/TUPAC where a letter represents
several nucleotides, e.g. D — A, G, T or M — A,C.

2 M. CHristodoulakis, C. S. Iliopoulos, L. Mouchard and K. Tsichlas

An important region, upstream from the gene, controls its expression.
This region contains several important binding sites where additional pro-
teins, initiating or regulating the transcription, attach themselves to the
DNA sequence. These binding sites are usually very specific DNA sequences,
that tolerate only very elementary changes, they are the keyholes of specific
keys and any violent alteration prevents the additional protein to bind, and
moreover the gene sequence from being transcripted [Stormo, 2000]. The
sequences that are found between the binding sites might differ from one
organism to the other.

To illustrate these concepts, let us consider the regulatory regions of the
hemoglobin genes («, 3,7, ¢ hemoglobins more precisely) where uppercase
letters correspond to the gene sequence and bold lowercase letters corre-
spond to a specific binding site sequence.

Hemoglobin a@ ... cggcactcttctggtecce ... atacccaccgATGGTGCT
Hemoglobin § ... tgacacaactgcaacctca ... aacagacaccATGGTGCA
Hemoglobin v ... gecgetaccgecctgegeg ... atgegegagtATGGTGCT
Hemoglobin { ... gctgcaacctgeccactee ... ggecagegcacATGTCTCT

We obtained four sequences we have to align:

Hemoglobin «
Hemoglobin g
Hemoglobin v
Hemoglobin ¢
Consensus ‘

0Q (00 O 0” 09
oo o o o
Olo O o
oo o o o
|t o+

Dl 0R Y
zg:og:o

As aresult, various techniques are used to represent these polymorphisms,
using either the extended alphabet we presented before or a more precise
encoding that takes into account the relative frequency of each nucleotide.
We can consider mainly two techniques, named Position Weight Matrices
(PWM for short) where for each position, the probability of each nucleotide
is given, and logo sequences [Schneider and Stephens, 1990].

The Position Weight Matrix [Thompson et al., 1994] of a set of strings
of length m is a 4 X m-matrix that reports the frequency of each nucleotide
for all possible locations. In our example, we have:

1 23 4 5 67
al0 0 075 05 0 0 0
cl02 1 0 05 075 1 0
g[075 0 025 0 0 0 0
t]0 0 0 0 025 0 1

Pattern Matching on Weighted Sequences 3

Weighted sequences are used for representing relatively short sequences
such as binding sites as in the example above as well as long sequences
such as profiles of protein families (see [Gusfield, 1997], 14.3). In addition,
they are also used to represent complete chromosome sequences ([Gusfield,
1997], 16.15.3) that have been obtained using a whole-genome shotgun strat-
egy [Venter and Corporation, 2001; Myers and Corporation, 2000] with an
adequate cover. The cover is the average number of fragments that appear
at a given location. Usually, the cover is large enough so that errors as well
as SNPs are clearly spotted and removed by the consensus step.

By keeping all the information the whole-genome shotgun produces, we
would like to dig out information that has been previously undetected af-
ter being faded during the consensus step (for example the consensus step
wrongly chooses a symbol for a specific position than another). As a result,
errors in the genome are not removed by the consensus step but remain and
a probability is assigned to them based on the frequency of symbols in each
position.

These are some biological examples where weighted sequences can be
important. We want to be able to support various pattern matching op-
erations on these sequences. Suppose for example that a biologist wants
to find whether a sequence at hand (which may as well be a weighted
sequence) occurs in a specific protein family with high probability in or-
der to decide whether a specific protein belongs in a family of proteins.
This can be accomplished by pattern matching algorithms on weighted se-
quences. Weighted sequences have also been used in event management
systems [Wang et al., 2003].

In this paper we propose various pattern matching problems on weighted
sequences under two probabilistic measures. Assume a weighted sequence s
of length n and a pattern p of length m over the alphabet 3. The pattern
may be a weighted sequence or not. We propose an O(nlogm) algorithm
for finding p in s given that the occurrence probability of p in s is larger
than % In addition, we propose an algorithm for finding p in s with gaps
with complexity O(mn).

Our results can be compared with the Weighted Suffix Tree (WST) [Il-
iopoulos et al., 2003]. The WST has all the merits of the usual suffix tree
with the difference that its construction is heavily based on the choice of
the probability of occurrence % It is crucial for its construction that k is a
fixed and small constant. When k changes then the suffix tree must be re-
constructed from scratch. In addition, for arbitrary k, the size of the WST
is prohibitive. With respect to the pattern matching problem, our solutions
are more general since they allow for arbitrary k, while at the same time we
investigate pattern matching with gaps.

4 M. CHristodoulakis, C. S. Iliopoulos, L. Mouchard and K. Tsichlas

The paper is organised as follows. In Sect. 2, we provide basic definitions
on weighted sequences. In Sect. 3, algorithms for the exact pattern matching
problem are presented while Sect. 4 describes an algorithm for locating
simple models (two strings seperated by a gap). Section 5 is dedicated
to pattern matching with gaps among the occurrences of the characters of
the pattern inside the text. Finally, some concluding remarks are given in
Sect. 6.

2 Preliminaries

Let ¥ = {1,2,...,0} be an alphabet of cardinality ¢ = |X|. A sequence
s of length n is represented by s[1..n] = s[1]s[2] - - s[n], where s[i] € ¥ for
1 <i<mn,and n = |s] is the length of s. Sequence s is also called a solid
sequence in order to distinguish them from weighted sequences. An empty
sequence is denoted by ¢; we write * = Xt U {e}. A factor f of s is a
substring of s, that is f = s[i...j]. A model in a string s consists of two
factors f1 and f5 of s seperated by a gap, where the gap is the number of
symbols between f; and fs. A weighted sequence is defined as follows.

DEFINITION 1. A weighted sequence s = s153 - - - s, over an alphabet X is

a sequence of sets of couples. In particular, each s; is a set ((1,7;(1)), (2, m(2)),...,
(0,mi(0))), where 7;(q) is the occurrence probability of character ¢ at posi-

tion ¢. For every position 1 <7 < n, ZZ=1 mi(q) = 1.

We represent each position of the weighted sequence as a vector that con-
tains all the symbols of the alphabet and their corresponding probabilities;
if a character does not appear in a specific position then its probability will
be zero. As a result, the weighted matrix representation will be used for
weighted sequences. We will represent each couple (¢, m;(q)) as m;(q)q, as
shown in the example below.

EXAMPLE 2. Consider the alphabet ¥ = {A,C,G,T}. Then

034 0254 04 044 084 04
(1) s= 0c 025¢ 1¢ 0.2¢ 0.05¢ 0.5¢
02¢ 055 0g 026 0.1¢ Og
0.57 O Or 027 0.057 0.57

is the weighted matrix that represents a weighted sequence of length 6.

DEFINITION 3. A symbol q occurs at position ¢ of a weighted sequence
s = s[l...n] if and only if the probability of occurrence of symbol ¢ at
position i is greater than zero, m;(q) > 0

EXAMPLE 4. Let s be the weighted sequence defined in (1). Then symbol
A occurs at positions 1, 2, 4, and 5 of s. Similarly, symbol C occurs at 2,
3,4, 5, and 6.

Pattern Matching on Weighted Sequences 5

The following definition clarifies when a solid pattern p occurs in a
weighted text t.

DEFINITION 5. The solid pattern p = p[l...m] occurs at position ¢ of the
weighted text ¢ = t[1...n] if and only if p[j] occurs at position ¢[i + j — 1]
for all 1 < j < m; that is, if and only if m;4;_1(p[j]) > 0, forall 1 < j <m
by Def. 3. We also say that p matches ¢ at position 1.

EXAMPLE 6. Let t be the weighted sequence defined in (1). Then p =
ACT A occurs in t at position 2, since mo(A) = 0.25, m3(C) = 1, m4(T) = 0.2,
and 75(A) = 0.8.

Since each symbol at position ¢ of the text t is assigned a probability of
occurrence it is logical to assume that an occurrence of a solid pattern p in
the weighted text ¢ must also have a probability of occurrence. In this way,
we define how likely is to find an occurrence of p in a specific position of ¢.
In the following we provide such matching measures.

DEFINITION 7. Let p = p[l...m] be a solid pattern, and ¢t = ¢[1...n]
be a weighted text. Also assume that p matches ¢ at position i. Then the
probability of the match can be defined in one of the following ways:

1. Multiplicative Probability is the product of the probabilities of
the symbols of ¢ that match p: Py, = [T%, misj—1(pl])

2. Average Probability is the average of the probabilities of the sym-
bols of ¢ that match p: P! . = Lizimiso1 ()

ver m

Note that the Average Probability Measure (APM) allows for characters
with zero probability. In general, the average probability measure is by far
less strict than the Multiplicative Probability Measure (MPM) for a given
cut-off probability % It is easy to see that all matches of the MPM are
contained in the set of matches for APM. As a result, by using the APM
we are more loose with respect to the matches we are going to get while by
using MPM we become much more strict.

EXAMPLE 8. Let ¢t be the weighted sequence defined in (1) and p =
ACTA, which occurs in t at position 2. Then the multiplicative proba-

bility of this match is P2 g =025-1-0.2-0.8 = 0.04 and the average

pro
probability of the same match is P2, . = w = 2'7?5

aver

The above definitions can be extended to cover the case where both the
pattern p and the text ¢t are weighted sequences. In this case we denote by
7¢,(q) the probability of the symbol ¢ at position i of ¢, and by 7, (¢) the
probability of the symbol ¢ at position j of p.

6 M. CHristodoulakis, C. S. Iliopoulos, L. Mouchard and K. Tsichlas

DEFINITION 9. Let p = p[l..m] and t = t[1..n] be weighted sequences.
We say that positions p[j] and t[i] match with respect to symbol q if 7, (q) x
m¢,(q) > 0; that is, if ¢ occurs at both p[j] and ¢[i].

However, note that p[j] and ¢[¢] may match with respect to many symbols.

As a result, we define the match between two positions as follows:

DEFINITION 10. Let the pattern p = p[l..m] and text ¢ = t[1..n] be
weighted sequences. We say that p[j] and t[i] match if 337_, m, (q) x 7, (q) >
0; that is, if p[j] and ¢[i] match with respect to (at least one) q.

EXAMPLE 11. Consider

O-3A OA

0.1 0.8
p; = Og and t; = Og

0.67 0.27

for some position j of the pattern, and some position i of the text. Then p[j]
and t[i] match because there is at least one symbol (precisely two: C and T
that occurs in both of them. Confirm that >° 4 o ¢ 7y T, (¢) X ™, (q) =
0.2>0.

Similarly to Def. 5 we get the following definition of a match, in the case
where both the pattern and the text are weighted.

DEFINITION 12. Let p = p[l..m] and t = t[1..n] be weighted sequences.
We say that p occurs in (or matches) t at position i if and only if

Pi _ Zj:l ZVSGE Tp; (8) X Tt —mtj (S) >0

w_aver
m

We call P the weighted average probability of the match of p at position
i of t. Similarly, we can define the weighted multiplicative probability of the

match of p at position 7 of ¢.

For the rest of the paper we will assume that p is a solid pattern. For the
cases where the algorithm is applicable to weighted patterns as well, it will
be explicitly indicated. Moreover, we will be interested in occurrences of
the pattern with probability larger than a threshold %, k > 1. In particular:

DEFINITION 13. Given a pattern p, a text ¢t and an integer k, we say
that p matches ¢ at position 7 over the probability measure C if and only if
Ci> 1.

If we do not interpret the weigth as a probability then other match-
ing measures may become interesting. For example, the maximum weight
matching measure, where the weight of a match between a solid pattern p of

Pattern Matching on Weighted Sequences 7

length m and a weighted text ¢ at position ¢ is maxi<j<m{wit+;—1(p[j])}. By
w;(q) we represent the weight of symbol ¢ at position 4 of text t. We believe
that our algorithms can be extended to tackle these matching measures too.

3 Exact Pattern Matching

In this section we provide algorithms for the problem of exact pattern match-
ing on weighted sequences. The problem we are going to tackle is the fol-
lowing:

PROBLEM 14. Given a solid pattern p = p[l...m], a weighted text t =
t[1...n] and an arbitrary constant k£ > 1, find all occurrences of p in ¢ with
matching probability > 1.

The solution to the exact pattern matching problem depends on the
matching measure (multiplicative or average) in use. We present the so-
lutions for both measures.

3.1 Average Probability

We are interested in finding all occurrences of p in ¢ with average probability
> 1/k, that is P! ., > 1/k. For a small constant k, the construction of the
weighted suffix tree cannot be accomplished in linear time, as in [Iliopoulos
et al., 2003], because the number of factors of ¢ is no longer linear.

For instance, consider a text ¢ where each position contains exactly two
symbols, from an alphabet X, each of which has probability 0.5, e.g.

A A GT -+ C

'=c G ca ... 4

Then, every possible substring of length m has an average probability 0.5
while the number of such substrings in ¢ is O(n2™), which results in a suffix
tree of size O(n2™). Consequently, a small constant k& does not allow us to
adopt an approach similar to [Iliopoulos et al., 2003].

An O(nlogm)-time algorithm, that works for arbitrary k, is possible
based on the Fast Fourier Transform (FFT). First we find the number of
matches between the pattern p and the text t for each position of ¢ by using
the FFT (this is the match-count problem [Gusfield, 1997]).

Let M (t,p, 1) be the number of characters of ¢ and p that match when p[1]
is aligned with ¢[¢]. We allow p[1] to be aligned to the left of ¢[1]. Negative
numbers specify the positions to the left of ¢[1]. As a result, the vector
M (t,p) stores all values of M (t,p,7) for —m +1 <i < n.

First, we break this problem into |X| subproblems, one for each character
of the alphabet . Let M,(t,p,7) be the number of matches of character
¢ when p[1] is aligned to t[i]. The (n + m)-length vector M,(t, p) holds all
these values. It is straightforward to see that:

8 M. CHristodoulakis, C. S. Iliopoulos, L. Mouchard and K. Tsichlas

(2) M(t,p) =Y My(t,p)

Vgex

As a result, the problem is reduced to finding the match-count for each
character. For each character ¢ construct two bit vectors p, and ¢, where
the i-th position is 1 if ¢ occurs in p[i] and ¢[i] respectively with non-zero
probability, otherwise it is 0. We pad the right end of p, with n zeros and
the right end of ¢, with m zeros. This is necessary for the application of the
FFT algorithm [Fischer and Paterson, 1974]. By renumbering the indices
of both bit vectors to run from 0 to n + m — 1, the number of matches for
symbol ¢ at position ¢[i] is:

n+m—1

(3) My(t,p,i)= Y Dglil x Lolj + 1]
7=0

where the indices are modulo n + m. The extra zeros were added so that
when the right end of p, is to the right of the end of ¢ then no additional false
matches are counted. This is the cyclic correlation of p, and ¢,, and My (t,p)
is computed by the FFT algorithm in O(nlogm) operations. As a result
the vector M(¢,p) by Eq. 2 can be computed in O(|X|nlogm) time. To
this point, we have computed the occurrences of p in ¢ without taking into
account the probabilities. By scanning M (¢, p) we can report all positions
that contain m in O(m + n) time.

The problem now is to compute the average probability of each occurrence
of pin t. A straightforward computation will lead to a time complexity of
O(mn). If the number of occurrences is up to "10% then we compute the
average probability straightforwardly in O(nlogm) time. However, if the
number of occurrences is larger than "1‘:% then we use the FF'T algorithm
again to compute the probabilities.

In the same manner as the construction of p, and ¢, we construct the
vectors Py and fq containing the probabilities of occurrence of character ¢
in each position. Then in the same way:

(4) M(t,p) =Y My(t,p)

Vgex

where M,(t,p) is the sum of the probabilities of occurrence of p in t for
character q.

n+m—1

(5) My(t,p,i)= Y Bglil x tglj +1]
=0

Pattern Matching on Weighted Sequences 9

This is the cyclic correlation of two vectors and by using the FFT algo-
rithm it can be computed in O(nlogm) time. The computation of M(t, p)
needs O(|X|nlogm) time by Eq. 4. As a result, by using vectors M (¢, p) and
M (t,p) we can find all occurrences with average probability greater than
% by just locating positions ¢ in M (¢,p) which contain m, and checking

whether w > +. Note that this algorithm will work even in the case
where p is a weighted sequence, while k can be arbitrarily large.

3.2 Multiplicative Probability

The exact pattern matching problem using the multiplicative probability
measure can be solved by constructing the weighted suffix tree [Iliopoulos
et al., 2003] of the text ¢ in O(n) time and space, and then traversing the
tree top-down to locate occurrences of the pattern. Iliopoulos et al. proved
in [Iliopoulos et al., 2003] that the exact pattern matching can be solved
in this manner in O(n + m) time, assuming that the alphabet ¥ is of fixed
size. However, this method works well only in the case where k is a small
constant and stays fixed; otherwise the number of factors in the suffix tree
would grow exponentially and therefore the size of the suffix tree and its
construction time would grow similarly. Additionally if k changes then the
tree must be constructed all over again.

Assume that pattern p is a solid sequence and that k is arbitrary. Pattern
p has an occurrence at position ¢[i] with probability P;md = H;’;l Ti+i—1(P[7])-
Applying the logarithm we get:

(6) log(Pproa) =Zlog(m—m+g‘(p[j]))

By this simple trick we got rid of the product and so we can apply the
same O(nlogm) algorithm described in Sect. 3.1 to find all occurrences.
Note that this trick does not work when both the pattern and the text are
weighted sequences. In this case, the only known algorithm is the straight-
forward O(mn) dynamic programming algorithm.

4 Searching for a Model

In this section we consider the following problem, concerned with 1-
Dimensional range searching [de Berg et al., 2000].

PROBLEM 15. Given solid patterns p = p[l...m] and ¢ = ¢[1...m/], a
weighted text t = t[1...n], a constant k& > 1, and constant a, 0 < o < n—m,
find all occurrences of p followed by a possible gap of size at most a and
then by ¢, in ¢ with matching probability > 1/k.

10 M. CHristodoulakis, C. S. Iliopoulos, L. Mouchard and K. Tsichlas

First by using the algorithms of Sect. 3.1 — 3.2 we find all occurrences
of p and ¢ in ¢t and we construct two data structures D, and D, that
store in increasing order the positions for p and ¢ respectively in t. The
time complexity for this step is O(nlogm) for the matching measures we
consider.

We traverse structure D), and for each occurrence of p we find the interval
of occurrences of ¢ in structure D,. D, can be implemented as a simple
linear list. Assume the occurrence of p at position j. Then, the query to
structure Dy, is of the form [j +m — 1,7 + m + o]. If we allow overlapping
then the query will be of the form [j,j + m + a]. If D, is implemented
as a binary tree then since the maximum number of positions in D, and
D, is n, this procedure is completed in O(nlogn) time. The use of finger
search trees [Brodal et al., 2003] reduces the time complexity to O(n) by
exploiting the fact that the list D), is sorted. This means that the ranges we
are searching are increasing in value and so instead of initiating the search
from the root of D, we initiate it from the leaves where the previous search
ended. In addition, it is easy to change the solution so that a lower bound
on the length of gaps applies, that is the gap is in the range [as, ay].

5 Pattern Matching with Gaps

Finally, in this section we consider the problem of pattern matching on
weighted sequences by allowing gaps between occurrences of successive sym-
bols of the pattern p in the text ¢.

PROBLEM 16. Given a solid pattern p = p[l...m], a weighted text t =
t[1...n], a constant k£ > 1 and a constant «, find all occurrences of p, allow-
ing the existence of gaps between the occurrences of consecutive symbols of
p, in ¢ with probability larger than 1/k. The gap g; between the occurrences
of p[i] and p[i + 1] in ¢ must satisty: |g;| < a.

EXAMPLE 17. Let p = TGA,

034 0254 04 044 084 04
Oc 0.25¢ 1¢ 0.2¢ 0.05¢ 0.5¢
0.2¢ 05¢ 0g 02¢ 01g Oqg
0.57 Or Or 0.27 0.05p0 0.57

k =10, and o = 1. Then p occurs in ¢ at position 1, with a-bounded gaps,
since 1 (T) = 0.5, m2(G) = 0.5, and 74(A) = 0.4; thus: P;lmd =TTy Ty =
0.1 > +. Note the gap (of size 1) between the second and the third symbols
of p inside t.

Since gaps are allowed between the occurrences of symbols of p, it is
possible that more than one occurrences of p end in a single position ¢ in .

Pattern Matching on Weighted Sequences 11

In what follows we will compute for each position i of ¢ only one occurrence
of p, namely the occurrence of p at i with the maximum probability, given
that this probability is larger than 1/k.

5.1 «a-bounded Gaps

The solution we provide is based on the dynamic programming approach.
The basic idea of the algorithm is the computation of continuously increas-
ing prefixes of pattern p in the weighted sequence t. Define the set of all
non-empty prefixes of pattern p to be II(p). Formally, I1(p) = {p[1], p[1..2],
p[1..3],...,p[l..m]}. We denote by A(p) the set of positions ¢ in the se-
quence t such that there is an occurrence of p with a-bounded gaps that
ends at position ¢ given that the probability of occurrence is greater than
%. Note that when extending the prefix p[l..i — 1] to p[l..i], due to an oc-
currence of character pli], we choose always the prefix p[1..i — 1] with the
maximum probability.

Let D be an (m + 1) X (n + 1) matrix. Each D(i,j), for 1 <i < m and
1 < j < n, will indicate whether there is an occurrence of the prefix p[1..i]
ending at position t[j], where the gaps are bounded by « and the probability
of occurrence is larger than 1/k. For this problem the base conditions are:

(a) D(,0) =0,0<i<m AND (b) D(0,j)=4j,0<j<n

The base condition D(i,0) = 0 is correct since there is no occurrence of
prefixes of p in the empty string. The base condition D(0, j) = j is also cor-
rect since the empty string is assumed to match each of the characters of ¢.
Before defining the recurrence relation it is necessary to give some notation
with respect to probabilities. Assume that we are currently working on cell
D(i, j). Attached to this cell is a list of occurrences of prefixes p[l..i — 1], of
maximum size « (the gap size). By P9"; we denote the occurrence of the
prefix p[1..i — 1] with the maximum probability (out of those occurrences of
p[l..i — 1] that appear in the list of the cell D(, j)). The recurrence relation
for D(i,7) (without considering the update of the lists) is as follows:

J if (pli] in t[j]) &(j —D(i—1,j-1)—1<a) &
(D(i— 1,5 — 1) > 0) &(P47 x m;(pli]) > 7)

(7) D(i,j) =<4 D(i,j — 1) if (previous case does not hold) &

(G—DGj—1)-1<a)

0 otherwise

If D(i,j) = j, then there is a match between t[j] and p[i] while the
prefix p[l..i — 1] may have an occurrence at D(i — 1,j — 1) and the gap is

12 M. CHristodoulakis, C. S. Iliopoulos, L. Mouchard and K. Tsichlas

< a. In addition, the probability of occurrence for this prefix is > % If
D(i,j) = D(i,j — 1), then there is no match between t[j] and p[i] and thus
we are not able to extend the occurrence of prefix p[l..i — 1] to p[l..i]. As
a result, D(i,7) = D(i,j — 1), as long as the gap invariant is satisfied. In
every other case, D(i,j) = 0.

For each position the occurrence with the maximum probability (given
that this probability is larger than 1/k) is given in the m-th row. The only
remaining detail are the lists of prefixes that must be maintained during
the construction of the matrix. This list must support three operations: 1)
insert a new element in the head of the list, 2) delete an element from the
tail of the list and 3) find the maximum element among the elements in the
list. By using a heap-ordered queue we can support all three operations
in constant time. If we want to store the whole matrix so that after its
computation we are able to trace it back for occurrences then each cell
must have its own list. This means, that when moving from D(i — 1,7)
to D(i,7) we have to copy the whole list and maybe make changes to its
head and tail. This means that the time complexity of the algorithm will
be O(mna) and the same goes for the space complexity.

However, based on the facts that the matrix D is computed column by
column and that the only difference between two adjacent lists are only in
their head and tail we can reduce the time complexity to O(mn). We use
a simplified version of the persistent lists described in [Kaplan et al., 2000].
These lists support the operations of removing an element from the tail of
a list, adding an element to its head, identifying the maximum element and
copying the list (in fact it records the history of the structure with respect
to update operations) in constant amortized time (for worst case constant
time complexity refer to [Kaplan, 1998]). This means, that over a sequence
of n operations the total cost will be O(n).

The algorithm presented in this section refers to the multiplicative prob-
ability measure. However, it can easily be adapted for the average proba-
bility by adding the maximum probabilities of the characters of the pattern
instead of multiplying them. For unbounded gaps we can use the same
algorithm by setting a =n —m + 1.

6 Conclusion and Open Problems

In the following table the results described in this paper are given.

Problem Multiplicative | Average
Exact Pattern Matching O(nlogm) O(nlogm)
Patterns Separated by Gap O(nlogm) O(nlogm)
a-bounded gaps O(mn) O(mn)

Pattern Matching on Weighted Sequences 13

We presented algorithms on various problems on weighted sequences.
These sequences seem to model various real life problems. Apart from the
use of weighted sequences that was described in the introduction, they also
appear in the field of event management for complex networks, where each
event has a timestamp [Wang et al., 2003, as well as in DNA micro-array
analysis, where expression levels of genes are recorded under different ex-
perimental conditions.

Weighted sequences are approximate by definition. However, this ap-
proximation measure is not the same as the usual distance metrics, like the
Hamming distance or the edit distance. The probabilities in the weighted
sequence provide a measure of our uncertainty concerning the data of the
sequence. The error introduced by metrics like Hamming distance, provide
a measure of the error that really exists between two sequences. As a re-
sult, it would be very interesting to design approximate pattern matching
algorithms for weighted sequences.

BIBLIOGRAPHY

[Brodal et al., 2003] G. S. Brodal, G. Lagogiannis, C. Makris, A. Tsakalidis, and
K. Tsichlas. Optimal finger search trees in the pointer machine. Journal of Com-
puter and System Sciences, Special Issue on STOC 2002, 67(2):381-418, 2003.

[de Berg et al., 2000] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.
Computational Geometry: Algorithms and Applications. Springer-Verlag, 2nd edition,
2000.

[Fischer and Paterson, 1974] M. J. Fischer and M. S. Paterson. String matching and
other products. Technical report, Massachusetts Institute of Technology, Cambridge,
MA, 1974.

[Gusfield, 1997] D. Gusfield. Algorithms on strings, trees, and sequences. Cambridge
University Press, 1997.

[Liopoulos et al., 2003] C. S. Iliopoulos, C. Makris, I. Panagis, K. Perdikuri, E. Theodor-
idis, and A. Tsakalidis. Computing the repetitions in a weighted sequence using
weighted suffix trees. In FEuropean Conference on Computational Biology, pages 539—
540, 2003. poster paper.

[Kaplan et al., 2000] H. Kaplan, C. Okasaki, and R. E. Tarjan. Simple confluently per-
sistent catenable lists. SIAM Journal on Computing, 30(3):965-977, 2000.

[Kaplan, 1998] H. Kaplan. Purely Functional Lists. PhD thesis, Department of Com-
puter Science, Princeton University, 1998.

[Myers and Corporation, 2000] E.W. Myers and Celera Genomics Corporation. The
whole-genome assembly of drosophila. Science, 287:2196—-2204, 2000.

[Schneider and Stephens, 1990] T.D. Schneider and R.M. Stephens. Sequence logos: A
new way to display consensus sequences. Nucleic Acids Res., 18:6097-6100, 1990.
[Stormo, 2000] G.D. Stormo. Dna binding sites: representation and discovery. Bioin-

formatics, 16(1):16-23, 2000.

[Thompson et al., 1994] J.D. Thompson, D.G. Higgins, and T.J. Gibson. CLUSTAL W:
improving the sensitivity of progressive multiple sequence alignment through sequence
weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids
Res., 22:4673-4680, 1994.

[Venter and Corporation, 2001] J.C. Venter and Celera Genomics Corporation. The se-
quence of the human genome. Science, 291:1304-1351, 2001.

14 M. CHristodoulakis, C. S. Iliopoulos, L. Mouchard and K. Tsichlas

[Wang et al., 2003] H. Wang, C. S. Perng, W. Fan, S. Park, and P. S. Yu. Indexing
weighted-sequences in large databases. In Proc. of the 19th International Conference
on Data Engineering (ICDE), 2003.

Manolis Christodoulakis, Costas S. Iliopoulos, and Kostas Tsichlas

Department of Computer Science, King’s College London
Strand, London WC2R 2LS, England

{manolis,csi,kostas}@dcs.kcl.ac.uk

Laurent Mouchard

ABISS, Atelier Biology, Informatics, Statistics and Sociolinguistics
Université de Rouen, 76821 Mont Saint Aignan Cedex, France

Laurent.Mouchard@univ-rouen.fr

